A Proof of the Hilbert-smith Conjecture
نویسنده
چکیده
The Hilbert-Smith Conjecture states that if G is a locally compact group which acts effectively on a connected manifold as a topological transformation group, then G is a Lie group. A rather straightforward proof of this conjecture is given. The motivation is work of Cernavskii (“Finite-to-one mappings of manifolds”, Trans. of Math. Sk. 65 (107), 1964.) His work is generalized to the orbit map of an effective action of a p-adic group on compact connected n -manifolds with the aid of some new ideas. There is no attempt to use Smith Theory even though there may be similarities.
منابع مشابه
The Hilbert–smith Conjecture for Quasiconformal Actions
This note announces a proof of the Hilbert–Smith conjecture in the quasiconformal case: A locally compact group G of quasiconformal homeomorphisms acting effectively on a Riemannian manifold is a Lie group. The result established is true in somewhat more generality.
متن کاملThe Hilbert-smith Conjecture
The Hilbert-Smith Conjecture states that if G is a locally compact group which acts effectively on a connected manifold as a topological transformation group, then G is a Lie group. A rather straightforward proof of this conjecture is given. The motivation is work of Cernavskii (“Finite-to-one mappings of manifolds”, Trans. of Math. Sk. 65 (107), 1964.) His work is generalized to the orbit map ...
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کامل1 A Proof Of The Hilbert - Smith Conjecture by Louis F . McAuley Dedicated to the memory of Deane Montgomery
The Hilbert-Smith Conjecture states that if G is a locally compact group which acts effectively on a connected manifold as a topological transformation group, then G is a Lie group. A rather straightforward proof of this conjecture is given. The motivation is work of Cernavskii (“Finite-to-one mappings of manifolds”, Trans. of Math. Sk. 65 (107), 1964.) His work is generalized to the orbit map ...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001